A conditional extreme value volatility estimator based on high-frequency returns
نویسندگان
چکیده
This paper introduces a conditional extreme value volatility estimator (EVT) based on highfrequency returns. The relative performance of the EVT is compared with the discrete-time GARCH and implied volatility models for 1-day and 20-day-ahead forecasts of realized volatility. This is also a first attempt towards detecting any time-series variation in extreme value distributions using high-frequency intraday data. The information content of EVT is examined in the context of forecasting S&P 100 index volatility. Adjusted-R values imply superior performance of the implied volatility index (VIX) and EVT in capturing time-series variation in realized volatility. The forecasting ability of various discrete-time GARCH models turns out to be inferior to VIX and EVT. According to the Theil inequality coefficient and the heteroscedasticity-adjusted root mean squared and mean absolute errors, (1) EVT provides more accurate forecasts than the VIX and GARCH volatility models; (2) VIX generally yields a less accurate characterization of realized volatility than EVT and GARCH models. These results have implications for financial risk management, and are thus relevant to both regulators and practitioners. r 2006 Elsevier B.V. All rights reserved. JEL classification: G12; C13; C22
منابع مشابه
estimation of value - at - risk and expected shortfall based on nonlinear models of return dynamics and Extreme Value Theory
We propose an estimation procedure for value at risk (VaR) and expected shortfall (TailVaR) for conditional distributions of a time series of returns on a ̄nancial asset. Our approach combines a local polynomial estimator of conditional mean and volatility functions in a conditional heterocedastic autoregressive nonlinear (CHARN) model with Extreme Value Theory for estimating quantiles of the c...
متن کاملEstimating Stochastic Volatility Diiusion Using Conditional Moments of Integrated Volatility
We exploit the distributional information contained in high-frequency intraday data in constructing a simple conditional moment estimator for stochastic volatility di usions. The estimator is based on the analytical solutions of the rst two conditional moments for the integrated volatility, which is e ectively approximated by the quadratic variation of the process. We successfully implement the...
متن کاملModeling and Forecasting Volatility in Indian Capital Markets
Various volatility estimators and models have been proposed in the literature to measure volatility of asset returns. In this paper, we compare empirical performance of various unconditional volatility estimators and conditional volatility models (GARCH and EGARCH) using time-series data of S&PCNX Nifty, a value-weighted index of 50 stocks traded on the National Stock Exchange (NSE), Mumbai. Th...
متن کاملAnalysis of High Frequency Financial Data: Models, Methods and Software. Part II: Modeling and Forecasting Realized Variance Measures
A key problem in financial econometrics is the modeling, estimation and forecasting of conditional return volatility and correlation. Having accurate forecasting models for conditional volatility and correlation is important for accurate derivatives pricing, risk management and asset allocation decisions. It is well known that conditional volatility and correlation are highly predictable. An in...
متن کاملModeling Volatility Spillovers in Iran Capital Market
This paper investigates the conditional correlations and volatility spillovers between the dollar exchange rate return, gold coin return and crude oil return to stock index return. Monthly returns in the 144 observations (2005 - 2017) are analyzed by constant conditional correlation, dynamic conditional correlation, VARMA-GARCH and VARMA-AGARCH models. So this paper presents interdependences in...
متن کامل